Wednesday, November 9, 2011

NASA Engineers Have Created a Super-Black Material that Absorbs on Average More than 99 Percent of Ultraviolet, Visible, Infrared, and Far-Infrared Light!


Opening New Frontiers In Space Technologies 


"""The reflectance tests showed that our team had extended by 50 times the range of the material's absorption capabilities. Though other researchers are reporting near-perfect absorption levels mainly in the ultraviolet and visible, our material is darn near perfect across multiple wavelength bands, from the ultraviolet to the far infrared," Hagopian said. "No one else has achieved this milestone yet."

The nanotech-based coating is a thin layer of multi-walled carbon nanotubes, tiny hollow tubes made of pure carbon about 10,000 times thinner than a strand of human hair. They are positioned vertically on various substrate materials much like a shag rug. The team has grown the nanotubes on silicon, silicon nitride, titanium, and stainless steel, materials commonly used in space-based scientific instruments. (To grow carbon nanotubes, Goddard technologist Stephanie Getty applies a catalyst layer of iron to an underlayer on silicon, titanium, and other materials. She then heats the material in an oven to about 1,382 degrees Fahrenheit. While heating, the material is bathed in carbon-containing feedstock gas.)

The tests indicate that the nanotube material is especially useful for a variety of spaceflight applications where observing in multiple wavelength bands is important to scientific discovery. One such application is stray-light suppression. The tiny gaps between the tubes collect and trap background light to prevent it from reflecting off surfaces and interfering with the light that scientists actually want to measure. Because only a small fraction of light reflects off the coating, the human eye and sensitive detectors see the material as black.

In particular, the team found that the material absorbs 99.5 percent of the light in the ultraviolet and visible, dipping to 98 percent in the longer or far-infrared bands. "The advantage over other materials is that our material is from 10 to 100 times more absorbent, depending on the specific wavelength band," Hagopian said.

"We were a little surprised by the results," said Goddard engineer Manuel Quijada, who co-authored the SPIE paper and carried out the reflectance tests. "We knew it was absorbent. We just didn't think it would be this absorbent from the ultraviolet to the far infrared."

If used in detectors and other instrument components, the technology would allow scientists to gather hard-to-obtain measurements of objects so distant in the universe that astronomers no longer can see them in visible light or those in high-contrast areas, including planets in orbit around other stars, Hagopian said. Earth scientists studying the oceans and atmosphere also would benefit. More than 90 percent of the light Earth-monitoring instruments gather comes from the atmosphere, overwhelming the faint signal they are trying to retrieve.""


Post a Comment

All My Verses Chemistry 4 Conscious Eggs ********* ALCHemYEGG AUMniVERSE