Friday, December 23, 2011

Secrets of the 'Levitating' Slinky: Simple 1940s-Era Toy Has Physicists Holdiay Gitty Over Striking Phenomenon & Video




""Spurred by a wave of recent Web videos showing the bottom of a dropped Slinky hovering dramatically in midair , physicists have provided new insights into this phenomenon, from the existence of shock waves in the falling Slinky, to a remarkably universal "levitation" time for a Slinky on other planets or moons despite their different gravitational fields.

In February 2000, the late science writer Martin Gardner posed a simple question intended for physics students, but also triggering a new round of papers and videos on the much-studied toy. Gardner wrote: "If you hold one end of a Slinky, letting it hang down and then drop it, what happens?"

"It turns out the bottom stays suspended, levitating in air for some period in time," said Shimon Kolkowitz, a physics graduate student at Harvard University in Cambridge, Mass. As an undergraduate at Stanford University in Palo Alto, Calif. in 2007, Kolkowitz wrote a paper now posted online for a class taught by his professor, physics Nobel Laureate Robert Laughlin.

And recently, Bill Unruh, a physics professor at the University of British Columbia, in Vancouver, heard some colleagues in the faculty lounge discussing a video of the levitating Slinky. As a result, Unruh, a world expert in black hole radiation, became captivated with Slinky physics.

Making calculations over a couple of days, Unruh wrote and posted a paper on the falling Slinky at the website arXiv.

Inspired by Gardner's riddle and earlier Slinky studies while putting together his paper, Kolkowitz calculated that the bottom of his metal Slinky would remain suspended for approximately three-tenths of a second. And only recently he made a surprising realization: the levitation time of the toy would be exactly the same if it were dropped on the moon, Jupiter or Mars, even with their vastly different gravitational fields.

Unruh found that the falling Slinky creates a shock wave through the toy, analogous to the blast wave of a bomb or a sonic boom created by aircraft.  

What in the world is going on?

"A Slinky is a simple spring, with the unique attribute that the spring in its natural resting state has all the coils touching one another," Unruh said.

"It's what's called a pretensioned spring," Kolkowitz added. "If you just leave it sitting on a desk on its side it'll actually be fully compressed."

Held from midair, the Slinky stretches out, quickly reaching a condition known as "equilibrium." in which the downward force of gravity is balanced by the upward tension of the coils above it.  When the top is released, the bottom stays suspended. The top of the Slinky collapses, so that the coils slam into each other. That collapse travels down as a wave through the Slinky. The bottom coils remain at rest until the top crashes into them.

And that's the key to understanding how the bottom of the Slinky remains suspended in midair for a short while.

"The bottom part of the Slinky hasn't deformed in any way," Kolkowitz explained. "Until that compression reaches the very bottom it won't move."

This levitation time -- approximately 0.3 seconds for Kolkowitz's own Slinky  -- would be the same on any planet or moon. Gravity and tension of the spring effectively cancel each other out.

Kolkowitz  said that one way of understanding this is that on the moon, the weaker gravitational field wouldn't stretch the Slinky as much, so the spring would compress more gently towards the bottom when dropped, taking the same 0.3 seconds to travel there. On Jupiter, the stronger gravitational field would stretch the suspended Slinky to a greater degree, so that the spring would have a larger distance to compress. But the more stretched-out top would snap back faster toward the bottom, resulting in the same levitation time.

As Kolkowitz pointed out, however, the Slinky's center of mass -- which shifts, but is always located somewhere in between the top and bottom of the toy -- still accelerates according to gravity all the way down to the ground from the moment it's released. So there's no violation of any of Newton's laws or Galileo's observations about falling objects.

The levitation time would only increase with a heavier Slinky and decrease if the coils were stiffer. The spring's mass and stiffness, Kolkowitz said, are the only two factors that affect the duration of levitation.""




Post a Comment

All My Verses Chemistry 4 Conscious Eggs ********* ALCHemYEGG AUMniVERSE